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Bootstrap Inference for Local Populations

Abstract

The randomized available case study, in which a nonrandom set of cases

(patients, animals, laboratory runs) is randomized among two or more treatments, is a

staple of biomedical research. Traditionally, such studies have been analyzed as

though the cases were a random sample from an infinitely large population

(Ludbrook and Dudley, 1998). The resulting statistical inferences address incorrect

populations. More importantly, in the presence of response measurement error these

inferences are inappropriate for the correct populations, understating the differential

impact of treatment (Reichardt and Gollob, 1999). In this paper I develop and

illustrate a nonparametric bootstrap approach to inference in such studies, an approach

that is faithful to the local origins of the randomized cases and can account for the

influence of measurement error.

KEYWORDS:  available cases, bootstrap inference, measurement error,

 randomization, resampling 
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Introduction

Biomedical and biobehavioral scientists have long acknowledged the

importance to good experimentation of randomizing the assignment of patients or

animals to competing treatments or levels of treatment. Randomization is essential to

causal inference, to our ability to argue that the observed differences in response to

treatment owe to differences in treatment and not to some source confounded with

treatment. The span of this inference is determined by how chance enters the design of

the study. If the cases to be randomized are a random sample from a larger well-

defined population of cases, the inference extends to that population. If, on the other

hand, the cases are not a random sample, but those available to the scientist, e.g.,

patient volunteers or laboratory mice of an appropriate age and lineage, then the

inference extends only to the local population made up of those available cases.

Scientists, and their statistical advisors, have been slow to recognize the

restricted span of causal inference for the randomized available case study. For

example, Ludbrook and Dudley (1998) summarized a survey of research reported in

prominent biomedical journals. They report that fully 96% of the studies in those

journals were randomized available case studies. Of these local population studies,

however, 84% had  been analyzed as if the cases had been random samples from

infinitely large populations. The authors decried the use of large population analyses

and advocated the use of randomization tests (Edgington, 1995; Good, 1999; and

Lunneborg, 2000) as more appropriate to local causal inference.

Randomization tests are justified fully by the treatment randomization of cases

and inferences based on those statistical tests are directed at the local population of

cases, those randomized among competing treatments. While a shift in the analysis of

randomized available case studies—away from, as examples, the analysis of variance

(ANOVA) or the t-test and towards randomization tests—certainly should be

encouraged, randomization tests have significant limitations. Here are three:
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(1) Randomization tests rely on what has been called a “sharp null hypothesis”

(Rubin, 1990a, 1990b, 1991), that any particular case would have responded

identically to each of the treatments under comparison. This is a much sharper

hypothesis, for example, than that the average response over all cases would be the

same to each treatment and may be too sharp for many scientists.

(2) Not all hypotheses of interest are amenable to randomization tests. For

example, in the two-way factorial design there is not a randomization test of the

hypothesis of no interaction between the two experimental factors.

(3) The focus of the randomization test is null hypothesis testing. That is, the

result of a randomization test is either a decision to reject or not the null hypothesis or

a -value assessing the strength of the experimental evidence against the nullp

hypothesis. Randomization tests do not make it easy to report “effect sizes”, estimates

of treatment effect magnitudes in the population. Many scientists and statisticians

would either complement or replace the -value with a confidence interval (C.I.) forp

the population treatment effect (Wilkinson, et al. 1999).

In this paper I develop an alternative to randomization tests in support of local

causal inference, inference from and  appropriate to randomized available case

studies. This alternative applies the logic of nonparametric bootstrap inference (Efron

and Tibshirani, 1993; Davison and Hinkely, 1997; Chernick, 1999; and Lunneborg,

2000) to the randomized study and, thus, surmounts the shortcomings mentioned

above. My approach will provide C.I.s for any desired treatment comparison, not just

main effects. These C.I.s are specific to the local population, the relevant span of

inference. And the scientist is given wide scope in defining treatment comparisons.

Where required, the bootstrap C.I.s may be used to test null hypotheses or to generate

p-values.

A distinct advantage of  my bootstrap approach is that C.I.s and the related

estimates of the standard errors (S.E.s) of sample treatment comparisons can be

corrected for the effect of errors of measurement of the response to treatment. For the

randomized available case study it is known (Neyman, 1990, and Reichardt and
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Gollob, 1999) that errors of measurement lead to C.I.s and S.E.s that are too wide

when estimated in the usual way, i.e., by assuming samples from infinite populations.

In the following sections I provide brief reviews of statistical approaches to

causal inference and of bootstrap inference before describing bootstrap randomization.

I finish the paper with an application of bootstrap randomization to a randomized case

study.

Statistical Models for Randomized Case Studies

The problem of choosing a statistical basis for making causal inferences has

been studied extensively by Rubin (1990a, 1990b, 1991) and my approach owes much

to his formulation of the randomized case study.

Consider what is, perhaps, the simplest design: A set of   cases, randomly�

sampled from a population of size , is randomly allocated by a researcher, to an� �� 

active treatment and  to a placebo treatment. Following treatment a response to��

treatment is measured,  or  depending on treatment� � � � �� � � �� 	 � 
 ���

assignment.

For this case population and the researcher's choice of treatments, Rubin

defines a treatment response population distribution, one that I represent as an array �

with  rows and two columns. The rows correspond to the cases and the columns to�

the two treatments. The entries are responses to treatment and, for the th case,�

� � �� � � �� � the th row of the population distribution gives a measure of the

differential effect of the active treatment on that case: . The scientist is� ��  ��� ��

interested in the magnitude of this treatment effect at the population level. An often

compelling choice for the population level effect is the average of the individual case

effects: .���� ��
���

�

��� ��� �  �� � � ��
Although the randomized case study does not provide the values of both ���

and  for any case, the design does allow us to estimate  unbiasedly. Here is a��� ����

summary of the rationale.

1. The population level treatment effect can be re-expressed as
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� � ���� �� �
��� ���

� �

�� �� ��� �  ��� � � � � � �� � ,

the difference in the mean responses to treatment over the population.

2. When a random sample of  cases from some case population is randomly�

split to form two treatment groups, those treatment groups are both random samples

from that case population.

3. As a result, the treatment responses of the  cases randomly assigned to��

the active treatment are a random sample of the population of responses to that

treatment. The mean of those  responses provides an unbiased estimate of the mean��

of the population of responses:  . Similarly, the mean of the�� � ��� � � �� � ��
���

	

�� ���

responses of the  cases randomized to the placebo treatment, , provides an� �� �

unbiased estimate of the mean of the population of placebo treatment responses.

4. The difference between these two unbiased estimates of population means

provides, in turn, an unbiased estimate of the difference in population means or of the

population mean of differences in treatment response: .�� � �  ���� � �� �
The estimate of the population mean, ,  is unbiased—it is as likely to be����

too large as too small—but the scientist needs to know as well how close to the

population mean the estimate is likely to be. How accurate is this method of

estimation? And, knowing the accuracy of estimation, can the scientist be confident,

for example, that  is positive rather than negative? These are questions posed of����

statistical inference.

Rubin (1990a, 1990b, 1991) distinguishes among four statistical models for

answering such questions from randomized case studies, where those answers take on

causal significance. Briefly, I characterize these models as follows.

Superpopulation Repeated Samples Inference

This is the near-universal model of choice of researchers and their statistical

advisors. A basis for statistical inference is created by modeling the distribution of the

value of our active-placebo treatment comparison statistic, , when� ��  �� �

computed for each possible random sample of cases from the infinitely large
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population that, it is assumed, was sampled randomly to provide cases for the actual

study. The standard deviation of the resulting sampling distribution is known as the

standard error of the treatment comparison statistic, , and assesses theS.E.� ��  �� �

sample to sample variability in that statistic. How the contents of this sampling

distribution are spread out around the value of the population mean treatment effect

tells us how to construct a confidence interval for that population effect, C.I. ,� �����

based on the results of a single study.  S.E.s and C.I.s are used widely to assess the

accuracy of our estimate of a treatment effect.

When the model used to generate the sampling distribution of  � ��  �� �

includes a null hypothesis of equal treatment effectiveness—i.e., that  —we���� � �

refer  to  the sampling distribution as a null sampling distribution and use it to test that

null hypothesis or to assign a -value to the observed value of  .p � ��  �� �

The infinite population (or, superpopulation) basis of the random samples

facilitates the modeling of sampling distributions, providing the statistician with

knowledge of two important consequences:

1. The two samples of response to treatment—the responses of  the  cases��

randomized to the  active treatment and the responses of the  cases randomized to��

the placebo treatment—are statistically independent of one another (e.g., if the

responses of those randomized to the active treatment are high, this has no implication

for the level of response of those randomized to the placebo treatment).

2. Within each of the treatment groups, the responses are independent of one

another (e.g., the responses of the  cases randomized to the active treatment are,��

essentially, random selections from an unchanging distribution of responses).

The sampling distribution for  is estimated, almost always, with the� ��  �� �

help of the assumptions that the distribution of responses to treatment in the

population follows that of a normal random variable for both the active and placebo

treatment and, further, that both distributions have the same variance. These

assumptions underly the two-sample -test and its extension to the multi-treatmentt

analysis of variance (ANOVA) and to normal linear regression.
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The assumptions of normality of distribution and of homogeneity of variance

can be avoided in nonparametric bootstrap inference for the infinite population (Efron

& Tibshirani, 1993 and Davison & Hinkley, 1997).

It remains, of course, the apparently unwarranted assumption that the

researcher's sample of convenience (or local population) is a random sample from an

infinite population of cases that is at the heart of the call by Ludbrook & Dudley

(1998) for the replacement of superpopulation models of inference, whether

parametric or nonparametric, in the analysis of the randomized available case study.

Randomization Tests of Sharp Null Hypotheses

A second of Rubin's (1991) models for inference is the one advanced as an

alternative to superpopulation inference by Ludbrook & Dudley (1998). A null

randomization distribution for the treatment comparison statistic, , is� ��  �� �

developed by computing the value of that statistic for all possible randomizations of

the  cases,  to the active treatment and  to the placebo treatment,� �� � � � �� �� �

under the null hypothesis that the response of the th case would be exactly the samei

to either treatment (Edgington, 1995). A small -value (or null hypothesis rejection) isp

associated with the observed  taking an extreme value in that distribution.� ��  �� �

 The sharpness of this null hypothesis, as noted earlier, can limit the typical

researcher's interest in this mode of inference. As well, the randomization test

provides no direct evidence of the accuracy of the randomization study estimate of the

treatment effect over the local population. These two factors may help explain the

limited implementation of randomization hypothesis tests in the analysis of

randomized available case studies.

Bayesian Predictive Inference

In a third, Bayesian paradigm, a posterior probability distribution is developed

for the range of candidate values for the (local) population treatment effect, .����

The more concentrated this distribution, the more certainty we have about the

magnitude of this effect. This posterior distribution depends not only on the responses

to treatment collected in the randomized available case study, but on the researcher's
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prescription of an initial or prior probability distribution for ; what values, in����

advance of the study, are likely ones for . The indeterminacy of this prior����

specification, perhaps, is what leads Rubin (1991) to worry that the approach may be

more easily “abused in practice” (Rubin, 1991,  p. 1214).

Randomization Repeated Samples Inference

A fourth and final model for causal inference is the one I exploit in this paper.

This model is based on the same concepts described for superpopulation repeated

samples inference—i.e., sampling distributions, S.E.s, and C.I.s. The distinction is

that the sampling distribution of   is one based on repeated samples that are� ��  �� �

obtained now by randomly randomizing the cases making up a local case population,

rather than by randomly sampling an infinitely large case population. In this way, the

sampling distribution reflects the actual source of randomness in the randomized

available cases study.

Superpopulation repeated samples inference requires that we estimate the

distribution of responses to each treatment in the infinitely large case population. For

the -test or ANOVA these distribution estimates have a “normal” shape, a commont

variance (estimated from the sample responses), and, for purposes of hypothesis

testing, a common mean as well.  The population response distributions underlying

bootstrap nonparametric superpopulation inference, by comparison, are each estimated

by (an infinite number of ) copies of the samples of responses from those distributions

(Lunneborg, 2000).

Randomization repeated samples inference similarly depends on an estimate of

the population response distribution. This estimation task is constrained by two

factors:

1. As the local case population is completely exhausted by the randomization

to treatment , it is not realistic to estimate the active and placebo� �� � � � �� �

response distributions separately. To accommodate the lack of independence of the

randomization samples, we should estimate the joint distribution in the population of

the responses to the two treatments.
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2. As the local case population may be decidedly finite—e.g.,  when� � ���

� � � � ��� � , a parametric estimate, particularly one assuming the population

distribution of responses to be continuous (e.g., bivariate normal) may be unrealistic

as well.

In view of these restrictions, the estimates of the population response

distributions that I develop below will be bivariate and they will take the form of

nonparametric maximum likelihood (NPML) estimates (Efron & Tibshirani, 1993).

The NPML estimate is widely used as a basis for bootstrap inference and I provide an

introduction to this in the following section.

Nonparametric Bootstrap Inference

  Applications of what has come to be known as the bootstrap approach to

statistical inference have increased impressively since Efron (1979) introduced the

name. The hallmark of bootstrap inference is that it provides a more widely applicable

basis for estimating sampling distributions. Previously, statisticians were dependent

upon mathematical analysis—and, frequently, parametric or sample size assumptions

essential to those analyses—to estimate the mathematical characteristics of the

sampling distribution of a sample-based estimate or test statistic. The bootstrap

substitutes computing power for mathematical analysis, freeing the statistician of both

analysis and assumptions and opening up the range of statistical inferences for which

sampling distributions can be estimated (Chernick, 1999; Lunneborg, 2000).

Bootstrap inference rests on the following ideas, illustrated for simplicity by a

single treatment experiment:

1. A random sample of  cases from a case population of size  is� �

administered treatment.

2.  The  measured responses to treatment, , constitute a random sample from� �

the  responses making up the otherwise unobservable population response�

distribution, .�

3. The population response distribution, , is characterized by a parameter ,� �

unknown and to be estimated (e.g.,  might be the population distribution mean).�
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4. The sample of responses to treatment, , provides an estimate, , of . (If  is� � ��

computed from  by the same rule as would yield  from , it is termed a plug-in� ��

estimate. The sample mean is a plug-in estimate of the population mean.)

5. Let  denote the unknown sampling distribution of , based on� ��� � � � �� ��

all possible random samples of size  from the population  with parameter .� � �

Knowledge of this distribution would allow us to report the accuracy of our estimate,

� �, of  in terms of the S.E. of  or a C.I. for .� �

6. Let  be a numeric estimate of . This estimate is a collection of � � ��

estimated responses to treatment.

7. The estimated population distribution,  is characterized by a parameter ,�� ��

calculated from  by the same rule we would use (if we could) to compute  from .� �� �

8. Let  be a random sample of size  from  and  be an estimate of � � � �� �
 

� � �

computed from that random sample. This estimate is computed by the same rule as

used to compute  from .  is known as a (first) bootstrap sample.� � �

�

9. As  is a collection of values, we can draw not just one, but many bootstrap��

samples, the number limited only by computational speed.

10. Let  and  denote the th in a random sequence  of� � � � � �� �� � � �
 

� �

bootstrap samples and estimates computed from those samples.  might be on the�

order of .�� ���

11. Let  designate the bootstrap sampling distribution of .� � �� � � � �� �
 
 

� � �� ��

This is the distribution of  values of , each computed from a randomly chosen� �
�

sample of  observations from  Each  is to be sampled from  by the same� � � � �� �

�

random process as was used to sample  from .� �

The central tenet of bootstrap inference is that, after centering the distributions

about their parameters, the computable bootstrap sampling distribution,

� ��  � � � � � �� ��
 

� �� �� � ,

provides an appropriate basis for estimating  and the limits of a C.I. for ,S.E.� �� �

quantities that would be defined exactly by the unknowable
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� �  � � � � �� 	� �� � .

Experience has taught that somewhat better estimates can be obtained, where �

is a location parameter such a mean or difference between means, if the Studentized

bootstrap sampling distribution,

�
��  ��



�



�
 �� �

S.E.



�

�� �

,

is used as an estimate of the Studentized sampling distribution,

� �
��  �
 �� �

S.E.���

(Efron & Tibshirani, 1993; Davison  & Hinkley, 1977). In these expressions, 
�� �S.E. �

is an estimate of computed from  while  is an estimate of S.E.  S.E. S.E.� � � � � ��
� � ��




�

 


computed from  The Studentizations are most easily accomplished where a closed� �
�

form expression is available for the estimation of the S.E.s. As noted below, I take

advantage of such an expression for  in the randomized available caseS.E.� ��  �� �

study. The term Studentization honors the statistician Gossett who, writing under the

name Student, derived the family of -distributions to describe the samplingt

distribution of t � �  � �� � ��� � � �� �  where  is the mean of  randomly chosen

observations from a normal distribution with mean  and  is an unbiased estimate� ��

of the variance of that normal distribution, computed from those same sample

observations.

All bootstrap inference rests, of course, on having , the numeric estimate of��

the unknown population distribution . Most applications utilize a NPML estimate. A�

small example illustrates the principle. Let  be a random sample of � � �� �� � � � �� �
observations from a population distribution, , containing a total of � � � �

observations. How should we estimate ? In fact, we know  of the values, from the� �

sample. How should we estimate the remaining  values?� ��  �

� � �� �� ��� � �?,?,?
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NPML estimation is based on the following idea. We seek that  from which��

it is most likely that we would obtain  when drawing three observations at� � �� �� �� �
random and without replacement from among a total of six. There are exactly

 � � � ! �  �  � � � � ! � � � ! � ! " � � ! � ! � � ��� 	 � � � � � �� �
distinct random samples of size three. How many of the 20 samples can contain the

values 3, 9, and 7? If, for example,  there is only once chance in� � �� �� �� "� �� �� � �
twenty of obtaining a sample consisting of a “3”, a “9”, and a “7.” However, if

� � �� �� �� �� �� �� � � the chances of a sample with those three values becomes two in

twenty and if  those chances increase to eight in twenty. This is a� � �� �� �� �� �� �� � �
maximum. There is no set of  values for which the chances of a random sample� � �

of  consisting of the values in  can exceed eight.� � � �

These results generalize beyond  and . The NPML estimate of � � � � � � �

consists of  copies of . If  is not an integer, there is no unique  and we# � ��� � # ��� �
are advised to cycle among alternative estimates (Booth, Butler, & Hall, 1994). If  is#

large enough—i.e., greater than 20, it is practicable to replace  with a single copy of��

� �, drawing bootstrap samples by sampling with replacement from the  observations

making up  rather than by sampling without replacement from the  observations� �

making up . This is equivalent to assuming the population to be infinitely large.��

I turn now to the focus of this paper, adapting bootstrap inference to the

random sampling associated with the randomized available case design.

Randomization NPML Estimation and Bootstrap Inference

I begin with the problem of defining an NPML estimate of the bivariate

population response distribution for the randomized available case design.

NPML Estimation

Again, I use a small example to illustrate my adaptation of bootstrap inference.

Assume I have randomized six patients, three apiece, between an active and a placebo

treatment. Before assessing their response to treatment we have no information about

the contents of the local bivariate population response distribution, , as reflected in�

the last two columns of the following matrix:
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Patient Treatment Active Response Placebo Response
1 P ? ?
2 A ? ?
3 A ? ?
4 A ? ?
5 P ? ?
6 P ? ?

Once the patients' responses to the treatments to which they were randomized

are known, we have partial knowledge of :�

Patient Treatment Active Response Placebo Response
1 P 3
2 A 4
3 A 6
4 A 11
5 P 9
6 P 7

a
b
c
d

e
f

To fully define , our estimate of , we must estimate the six remaining� ��

unknown responses, , , , , , and . How can we insure that the resulting  is ana  b  c  d  e f ��

NPML estimate of ?�

 In this example, there are

� �� � �  � 

�  ! �  � ! � 
� � ��

� �

� �

different ways in which the six patients can be randomized between the two

treatments. The NPML goal is a set of  responses that maximize the chances� �� ! �

among these 20 that we observe responses of 3, 9, and 7 for the patients randomized

to the placebo treatment and responses of 4, 6, and 11 for the patients randomized to

the active treatment.

Our NPML estimate of the bivariate  must satisfy the univariate rule�

introduced earlier:

1. Replace , , and  with a second copy of the values 4, 6, and 11 and replacea  e f

b c d, , and  with a second copy of the values 3, 9, and 7.

As well, the estimate must insure that:

2. The replacement values are consistently aligned with the observed values.
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That is, if we replace  with a 4, we must also replace  with a 3. The resulting NPMLa b

estimate will consist, in this case, of two copies of three bivariate observations. Here

is an NPML , estimated values in italics :��

Patient Treatment Active Response Placebo Response
1 P 3
2 A 4
3 A 6
4 A 11
5 P 9
6 P 7

4
3
7
9

11
6

And,  here is a second NPML :��

Patient Treatment Active Response Placebo Response
1 P 3
2 A 4
3 A 6
4 A 11
5 P 9
6 P 7

6
9
3
7

4
11

There are, in fact, six NPML estimates of . For each, the chances of a�

randomization of patients resulting in “active” responses of 4, 6, and 11 and “placebo”

responses of 3, 7, and 9 are eight in twenty. These chances cannot be bettered.

The Importance of the Active-Placebo Response Correlation

The six NPML estimates are alike in their distribution of active response and

in their distribution of placebo responses. That is, they have the same marginal

distributions. They differ in how the two distributions are aligned with one another.

Or, in perhaps more familiar terms, they differ in the degree of correlation between the

two sets of responses, their estimates of . For our first example, the estimated���

correlation between the two is almost perfect,  , while for the second it�� � �����$��

nearly vanishes, �� � �����$���

The multiplicity of  NPML estimates and the variation in the between

treatments correlation of responses to treatment comes about because the randomized

available case study provides no information about the magnitude of the correlation.

No cases receive both treatments and, hence, there can be no estimate of that
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correlation. Does the multiplicity of estimates matter? And, if it does, how should we

proceed?

That the value of this correlation does matter to statistical inference was

recognized in the 1920s by the eminent statistician Jerzy Neyman (Neyman, 1990) and

was verified independently by psychological scientists Reichardt and Gollob (1999).

From the latter paper, we have this formula for the sampling variance (or, square of

the S.E.) of the randomized study estimate of an active treatment effect:

S.E. � �
� �



� � �



� � �

� �� �� �
� � � � � � � �

�  � � �  
� � � � � � ��

 � � � � � � � � �

where  and  are the variances of the responses to the two treatments in the� � 
� �

population distribution. The first term on the right of this equation provides the basis

for the classical, infinite population, estimate of the S.E. The second and third terms

tell us that this classical estimate will be too large in the randomized available case

study if the two variances differ or if the correlation between the two treatments is less

than 1. In fact, is a decreasing linear function of . When� S.E.  
� �� ��  � ���

� � � � �� ���
 
� � and  the S.E. falls by 29% as  decreases from 1 to 0 and� � �

continues to fall to 0 as  reaches 1. The widths of C.I.s would shrink at��� 

essentially the same rate.

Estimating ���

Clearly, the magnitude of  makes a difference to the sizes of S.E.s and���

C.I.s in the randomized available cases study.  What can the researcher do to take into

account the size of this correlation?

1. The correlation is almost certain to be positive and substantial in magnitude.

Indeed, if we had reason to suspect that the responses to  the active and placebo

treatments would order the cases in our local population in substantially different

ways, we would choose a research design that permits us to do more than estimate a

mean effect of the active treatment in the population. Response of a case to the active

treatment would be dependent on more than the active treatment and the response of
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that case to a placebo treatment. Identifying what that “more” could be would

necessarily become an important goal of the study.

2. In the absence of an estimate of this positive correlation, a reasonable

strategy, the one originally proposed by Neyman (see Neyman, 1990, and the

accompanying commentary by Rubin, 1990a), is to accept the more conservative

results associated with using the maximum correlation NPML estimate as the basis for

generating a bootstrap sampling distribution and from that, S.E.s and C.I.s.

3. Earlier research in which both of our treatments—or, two similar

treatments—were administered to the same cases might give us an estimate of the size

of the correlation, . Care is required here. The correlation based on observed����

responses is almost certain to underestimate the (hypothetical) . But, by what���

amount?

4. An indirect estimate of , or of an upper bound to its value, may be���

available, even though no cases will have responded to both treatments. The

correlation of two sets of  measures is restricted by the accuracy of  those measures.

An upper bound for the value of  is given by the psychometric reliability of the���

treatment response measure in the local population (Reichardt & Gollob,  1999).

Basically, the psychometric reliability is the correlation between two sets of

measurements, the two collected for the population under near-identical circumstances

(e.g., Anastasi, 1982). There are at least three instances in which this response

measure reliability for the local population might be estimated.

5. In our randomization study, the treatment response measure for a case could

be the result of summing (or, averaging) responses to a sequence of, for example,

stimuli, trials, or items. Let  be the correlation, say, for the placebo treatment cases,%��

between the sums of the odd-numbered and even-numbered responses in the

sequence. This correlation between half-length measure measures can be promoted to

a  full-length reliability estimate—and, hence, to an estimated upper bound for —���

through application of what is known as the Spearman-Brown prophecy formula

(Anastasi, 1982) :
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�max  .� ����
��

��

�
� %

� � %

6. The measurement accuracy of the response to treatment may be known. In

particular, we may know the variability of the measure for a typical case of the kind in

our local population. For example, we might know from an earlier investigation the

variance of systolic blood pressure when measured repeatedly on the same patient. A

related definition of psychometric reliability is that is the (estimated) proportion of the

overall population variance of a response measurement that is true between-case

variance, eliminating within-case variance (Anastasi, 1982). Let  be the within-&
�

case variance of the response measure, averaged over a set of cases not unlike those

used in our randomized treatment study. Let  be the observed between-cases&
�

variance of the response measure for the cases randomized to the placebo treatment.

Then, we have as a second estimate of the upper bound of :���

�max� ����

 
� �


�

�
&  &

&
 .

7. The within-case variance, ,—or, its square root, the standard error of&
�

measurement—is held to be relatively constant from one population to another,

provided the two are made up of the same kind of cases (Anastasi, 1982). This permits

us to estimate the reliability of a response measure in a new, local population from a

reliability study carried out on a sample of cases from a second, similar population.

Let  be defined as above and let  and  be the reliability estimate and& % & 
� ���

observed between-cases variance of the response measure obtained from an earlier

reliability study. Thus, a third estimate of a maximum value for  is:���

�� � � �
max ���

 
� ���


�

�
&  �  % &

&
 .

If, for example, we have a reliability estimate for a measure of cognitive ability

(preferably of the split-half or single-administration variety, rather than one based on

measures of the performance obtained at two different times) based on one sample of

male college sophomores, we could use that to estimate the reliability in a new sample



19

of male college sophomores, so long as we have estimates of the variances in that

cognitive performance for the two samples. Typically, reliability studies are carried

out on samples with wider variability than is found in a sample of experimental

volunteers and the two reliability estimates will differ.

Interpolating a S.E. and C.I. Limits

How can we use an estimate of, or limiting value for,  once we have found���

such a value? We would be exceedingly fortunate to find exactly that correlation

between the two sets of responses making up any one of the NPML estimates of the

bivariate . Rather, I propose using  or where such an estimate is� ����
�max —� ����

available—to interpolate the value of the S.E  or of limits to a C.I. I proceed as.

follows:

1. Form the NPML bivariate population estimate with maximum between-

treatments correlation.  To do this I create a basic building block of bivariate

observations by aligning the active and placebo responses by magnitude. Let  be%max

the between-treatments correlation in that estimated population.

2. Draw bootstrap samples from this estimated population, create a bootstrap

sampling distribution and use this to estimate a maximum S.E. for the treatment

comparison statistic and outer limits for a C.I. for the population treatment effect.

3. Form a NPML bivariate population estimate for which the between-

treatments correlation is near-zero. To do this  I create a second basic building block

of bivariate observations, this time randomly pairing the active responses with the

placebo responses. Let  be the between-treatments correlation in this estimated%min

population.

4. Draw bootstrap samples from this estimated population, create a second

bootstrap sampling distribution and use this to estimate a minimum S.E. for the

treatment comparison statistic and inner limits for a C.I. for the population treatment

effect.

5. The Reichardt & Gollob (1999) formula establishes that the square of

S.E. C.I.� � � �� � � ��� and, hence, the square of the width of  are both linear�
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functions of  . Thus, I can linearly interpolate between the minimum values of���

these squares, those associated with the  bootstrap sampling distribution, and thermin

maximum values of these squares, those associated with the  bootstrap samplingrmax

distribution, finding a and squared  width appropriate to ourS.E. C.I.
� � ���� � � ��  �

����  . These are then translated into S.E. and C.I. limit estimates. As aor �max� ����

detail, I advocate interpolating the two halves of the confidence interval separately as

the interval may  not be symmetric or, more likely, a researcher's interest may center

on a lower or upper confidence bound for the population treatment effect, rather than

on an interval.

Forming Randomization Bootstrap Sampling Distributions

Steps 2 and 4 in the above flow of analysis call for forming bootstrap sampling

distributions and, from these, estimates of  and of the limits to aS.E.� ��  �� �

C.I.� ����� � Here I review the construction of these sampling distributions.

It is important to note that bootstrap samples are to be drawn from the NPML

estimated bivariate distribution in exactly the same manner as the observed response

samples were drawn from the, otherwise unobservable, “real world” bivariate

distribution.  That is, each bootstrap sample is the result of randomizing  the �

�� � � �� � �� ��  cases making up the local population,  to an “active” treatment and

��  to a “placebo” treatment, and then recording  their responses from the “active” or

“placebo” columns of the estimated response distribution, as appropriate.

The responses of the th bootstrap sample provide what is needed to compute�

both  and . The first statistic is� � � � �  ��
 
 

�� � �� ���� � � ��  � �  �� �� �


 


� �
� � �

� S.E.

the difference in treatment means for that bootstrap sample. The second statistic is the

Studentized form of this difference, the result of dividing the deviation of this

bootstrap estimate from the parameter it estimates by an estimate of the S.E. of the

bootstrap estimate.

The bootstrap population parameter, , is the average of the differences in�����

response to the two treatments as given in the NPML estimate, . The S.E. estimate,���
S.E.� ��  �� �




�
, is computed from the th bootstrap sample using one of two versions�
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of the Reichardt & Gollob formula given earlier, in which population variances are

replaced with their bootstrap randomization sample estimates,  and . For� �� ��� ��

 


bootstrap samples drawn from the maximum-correlation NPML ,  is assumed�� ���

to be 1 in the formula. As a result, the S.E. estimate takes this form:�

�
S.E. � �

��� � �� � ��  � � � 
� �

� � � � �

� �
� �



�


 
 

� �

� �� �


 

� �

� � � �
� � � �   .

Where interpolation of results is required, bootstrap samples must be drawn as well

from the minimum-correlation NPML . Then,  is assumed  to be 0, and the S.E.�� ���

estimate then takes this form:

�
S.E. � �

���� � � � �
�  � � �  

� � � � � �

� � � � � � ��

 �
� �



�

 
�� ��

� � �� � �

�� ���� ��


� � � � � �
  .

The bootstrap sampling distributions of both  and  are built up over� �
 

� 

� � �� �� � � � randomly chosen randomizations of the local population, a process

that may need to be repeated, drawing treatment responses from the minimum-

correlation the second time around.��

Bootstrap S.E. and Percentile-  C.I. Estimatest

The bootstrap sampling distributions for � �
 

�  and  can then be used to estimate

a S.E. for the treatment comparison statistic, , and to estimate a C.I. for the� ��  �� �

local population treatment effect, . The bootstrap estimate of  is���� S.E.� ��  �� �

given by

�
S.E.� � � �

���� � ���  � � � 
�

�  �
�� �

���

�



�� ���


�   ,

effectively the standard deviation of the (e.g., Efron &� � � values of 

�� � ��  �� �




�
 

Tibshirani, 1993).
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This estimated S.E. provides a measure of the variability in the value of

� ��  �� � , variability resulting from the randomization of cases between the two

treatments. The estimated S.E. also plays a role in our estimation of a C.I. for .����

The C.I. estimates described here are what are called percentile-  or bootstrap-t t

C.I.s (e.g., Lunneborg, 2000). Such estimates are justified by the finding noted earlier

that, for estimates of location parameters, estimates, the bootstrap sampling

distribution

� � � �
 �
 
 


�  �
���� � 
 ��� �

� �
�  �

�  �

� �



�

� �



�

�

S.E.
,

can be expected to provide a good estimate of the Studentized sampling distribution,

�
 ��� �
� �

�  � 

�  �

� � ���

� �

�

S.E.
.

Suppose we want to estimate a % C.I. for  . Let  be� � � ��  � ��� �� � ����

��
�

the value below which lie the smallest 100 % of the bootstrap sampling distribution�

of  and let   be the value above which lie the largest 100 % of the� � � 
 
��
 � � �� �

bootstrap sampling distribution of , the  and  quantiles of that sampling� � 

 � �� �

distribution. Then, the lower limit to the estimated C.I. is given by

� � � �� ��
�  �  � � � �


��
�S.E.� ��  � !� � �

and the upper limit is given by

� � � �� ��
�  �  �� �


��
�S.E.� ��  � !� � � ,

where  is the bootstrap estimate of S.E. described earlier.
�
S.E.� ��  �� �

Example

A collection of reusable S-Plus (MathSoft, 1999) functions to carry out the

required computations are available from the author. These functions were used in the

analysis described here. The data are taken from a secondary source (Hand, et al.,

1994).
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Forty laboratory mice are randomized into four treatment groups, ten to each.

One group is designated a placebo group. Animals in the other three groups are

administered either a low, medium, or high dose of an investigative substance.

Following administration of placebo or investigative substance, response time in

milliseconds to an electric stimulus delivered to the tail is measured. The reaction

times are these:

 [1] 2.4 3.0 3.0 2.2 2.2 2.2 2.2 2.8 2.0 3.0
[11] 2.8 2.2 3.8 9.4 8.4 3.0 3.2 4.4 3.2 7.4
[21] 9.8 3.2 5.8 7.8 2.6 2.2 6.2 9.4 7.8 3.4
[31] 7.0 9.8 9.4 8.8 8.8 3.4 9.0 8.4 2.4 7.8

Response times for the 10 placebo animals are reported in the first line, followed by

those for the low, medium, and high dose animals.

For purposes of illustration, I find S.E. and C.I. estimates for each of six

treatment comparisons, placebo vs. low, placebo vs. medium, placebo vs. high, low

vs. medium, low vs. high,  and medium vs. high. The sample values of these

comparisons, differences in sample mean response times, are listed here.

     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 2.28 3.32 4.98 1.04  2.7 1.66

All treatment comparisons reflect increased response times for increased dosages.

Estimated S.E.s for the six sample comparisons and estimated 90% bootstrap-t

C.I. limits for the corresponding local population parameters were obtained, first

under the assumption of maximum between treatment correlations:
        se         lb            ub
[1,] 0.9475473  0.1298728 2.28 4.268236
[2,] 0.9445015  1.1932715 3.32 5.125745
[3,] 0.9400225  2.8534152 4.98 6.812919
[4,] 0.9861751 -1.0333153 1.04 3.119057
[5,] 1.0119251  0.5454304 2.70 4.765690
[6,] 0.9802569 -0.4535278 1.66 3.625892

S.E. estimates are given in the first column, lower and upper bound parameter

estimates in columns two and four, and the point estimate—the sample mean

difference—in column three.
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 These are the corresponding estimates based on the assumption of

minimum between-treatment correlations:
            se         lb            ub
[1,] 0.8069315  0.7943806 2.28 3.651933
[2,] 0.8360426  1.7413901 3.32 4.808211
[3,] 0.8121788  3.6136318 4.98 6.369008
[4,] 0.8385232 -0.3527204 1.04 2.533939
[5,] 0.8352721  1.2869342 2.70 4.120851
[6,] 0.8348318  0.1920332 1.66 3.122305

This second set of  S.E. estimates is smaller and the C.I. widths are shorter than they

were for maximum treatment correlations. Finally, these are the interpolated S.E.s and

C.I. limits, assuming each of the six between-treatment correlations takes the value

� � 0.80.
     se.int     lb.int        ub.int
[1,] 0.9240941  0.2322750 2.28 4.173308
[2,] 0.9206761  1.3061427 3.32 5.057823
[3,] 0.9196315  2.9618685 4.98 6.745638
[4,] 0.9632128 -0.9365398 1.04 3.033774
[5,] 0.9806463  0.6660628 2.70 4.658995
[6,] 0.9556651 -0.3524599 1.66 3.545035

These final results are purely illustrative. I have no basis for the assumption of this

particular correlation between treatments. The value, 0.80, however, may be� �

reasonably close to the proportion of the observed between animals response time

variance that is “true” inter-animal variability. Or, roughly 20% of the observed

variability may be error variability.
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